
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Adversarial Representation Mechanism
Learning for Network Embedding

Dongxiao He, Tao Wang, Lu Zhai, Di Jin, Liang Yang, Yuxiao Huang,
Zhiyong Feng*, and Philip S. Yu, Life Fellow, IEEE

Abstract—Network embedding which is to learn a low dimensional representation of nodes in a network has been used in many network
analysis tasks. Some network embedding methods, including those based on Generative Adversarial Networks (GAN) (a promising deep
learning model), have been proposed recently. Existing GAN-based methods typically use GAN to learn a Gaussian distribution as a
prior for network embedding, which makes it difficult to distinguish the node representation from Gaussian distribution. It did not apply
the adversarial learning strategy on the representation mechanism but just on representation results. Thus, it does not make full use
of the essential advantage of GAN, and leads to compromised performance of the method. To address this problem, we propose a
novel adversarial learning framework consisting of three players for network embedding, which applies the adversarial learning strategy
on the representation mechanism, called Adversarial representation mechanism GAN (ArmGAN). Specifically, the first two players,
named encoder and competitor, aim to learn two different representation mechanisms (i.e., two ways projecting data onto latent space).
They compete with each other to improve their representation mechanisms. The third player is the discriminator, which discriminate
the representation mechanism of the encoder from that of the competitor. In addition, we design a perturbation strategy to produce
fake networks from the original network, and feed the fake networks to the competitor to obtain a “fake” representation mechanism. We
evaluated ArmGAN on a variety of tasks including node clustering, node classification, link prediction and visualization. Moreover, we
compared ArmGAN with 10 state-of-the-art methods (including DGI, which is well-known for its high accuracy) on 7 real-world networks.
The experimental results show the significant superiority of ArmGAN over the existing methods.

Index Terms—Network embedding, Generative adversarial network, Graph neural network, Social network analysis.

F

1 INTRODUCTION

N ETWORKS provide a ubiquitous way to organize data,
where edges represent complex relationships and

nodes encode rich information in the data. An effective
method for analyzing networks is network representation
learning (a.k.a., node embedding), which aims to learn
the low-dimensional latent representation of nodes in the
network [1], [2], [3], [4]. As the learned representations
encode the topology and node content information, the
representations can be used for network analysis tasks such
as link prediction, node classification, network visualization,
user recommendation and community detection [5], [6], [7],
[8], [9]. Network representation learning algorithms can
be divided into two categories, semi-supervised algorithms
and unsupervised algorithms. Methods in the first category,
such as MMDW [10], GCN [11], and SSNE [12], introduce a
small amount of prior information. Methods in the second
category do not use any label information, which includes
DGI [13], DeepWalk [1], node2vec [14], MNMF [15], LINE
[2], GraRep [3], TADW [16], SNE [17], TriDNR [18] and
AANE [19]. In this paper, we focus on unsupervised repre-

• D. He, T. Wang, L. Zhai, D. Jin, Z. Feng are with College of Intelligence
and Computing, Tianjin University, Tianjin 300350, China.
E-mail: {hedongxiao, wt2019216113, xi1895, jindi, zyfeng}@tju.edu.cn.

• L. Yang is with School of Artificial Intelligence, Hebei University of
Technology, Tianjin 300131, China. E-mail: yangliang@vip.qq.com

• Y. Huang is with Data Science, George Washington University, Washing-
ton, D.C. 20052, USA. E-mail: yuxiaohuang@gwu.edu.

• P.S. Yu is with the Department of Computer Science, University of
Illinois at Chicago, Chicago, IL 60607, USA, and also with the Institute
for Data Science, Tsinghua University, Beijing 10085, China. E-mail:
psyu@cs.uic.edu.

• *Zhiyong Feng is the corresponding author.

sentation learning, since it is the more general and popular
category.

Generative Adversarial Networks (GANs) [20] have be-
come a powerful deep generative model. GAN is inspired
by the two-player game in game theory. The two players
in GAN are a generator G (generating data that resemble
real data) and a discriminator D (distinguishing real data
from generated data). In other words, the generator’s goal
is to “fool” the discriminator by generating data that are as
similar to the real data as possible. The discriminator’s goal
is to “debunk” the generator by discriminating between real
data and generated data.

While GANs were originally proposed to generate im-
ages, recently they have been extended to network em-
bedding. For example, ARVGA [21] leverages adversarial
learning to regularize the embedding results of graph au-
toencoder [22], i.e., forcing the embedding to match Gaus-
sian distribution. This framework was further extended by
letting autoencoder reconstruct both the topology and node
attributes instead of just reconstructing network structure
in ARVGA [23]. ANE [24] proposes an inductive variant of
DeepWalk [1] for preserving network structure properties in
latent space and leverages adversarial learning by matching
latent representations to given priors (such as Uniform or
Gaussian distribution). VANE [25] proposes a multi-view
adversarial framework that is based on two adversarial
games, where the first game enhances the comprehensive-
ness of the node representation by discriminating different
views information and the second game ensures the robust-
ness of node representations by fitting the distribution of
node representations to a given noise distribution. GANE

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

[26] is capable of performing feature representation learning
and link prediction simultaneously, using GANs to regular-
ize the vertex pairs by forcing the generated vertex pairs to
resemble the real data. To sum up, most existing network
embedding approaches with adversarial learning can be
categorized into the framework of adversarially forcing the
embedding results to follow a given or latent distribution.
A more comprehensive introduction of GAN-based network
embedding methods are given in Related Work.

It is worth noting that these existing methods typically
apply the adversarial learning strategy on the representation
result, e.g. matching the distribution of representation to
an arbitrary prior, such as Gaussian distribution in most
cases. However, this strategy makes it difficult to distinguish
the representation from Gaussian noise, since it requires
the representation to obey the Gaussian distribution, which
roughly equals adding a Gaussian regular term to the rep-
resentation. While this is reasonable to some extent, it does
not make full use of the essential advantage of adversarial
learning. We believe it is better to apply the adversarial
learning strategy on the representation mechanism that
projects data onto latent space (to make the system robust
and effective) rather than on the representation itself (which
simply requires the representation distribution to follow
some priors). However, it is difficult to apply the adver-
sarial learning strategy on the representation mechanism
for the GAN models, as they contain only two players (i.e.,
encoder/generator and discriminator) and only the encoder
realizes the representation mechanism from data space to
latent space.

To address this problem, we propose a novel adversarial
learning framework for network embedding, called Adver-
sarial representation mechanism GAN (ArmGAN), which
applies the adversarial learning strategy on the represen-
tation mechanism. To achieve the adversarial training of
the representation mechanism, the new framework con-
tains three players. The first two players host two differ-
ent representation mechanisms (i.e., two different ways to
project data space onto latent space), named encoder and
competitor. They compete with each other to improve their
representation mechanisms under the guide of adversarial
principle and the whole framework. The third player is
the discriminator, which discriminates the representation
mechanism of the encoder from that of the competitor. The
three players adversarially learn with each other in the new
system. This is fairly different from the framework of the
existing GAN-based network embedding methods since it
is impossible for them to achieve the adversarial training
of the representation mechanism because they have only
one player to host representation mechanism. Furthermore,
the new framework has a new type of relationship between
the three players. The goal of the encoder and that of the
discriminator are consistent, as they work together to let
the “real” encoding mechanism from encoder be taken as
“real” one. In contrast, the goal of the competitor is to “fool”
the discriminator by acting like encoder, i.e., it pretends
to be the real representation mechanism to deceive the
discriminator. The remaining question is how to design the
competitor player. There are three conditions the competitor
should meet. First, it should be a competitive representation
mechanism from data to latent space. Second, it should be

a “fake” representation mechanism. Third, it should be a
neural network itself so as to adapt to the overall neural
network framework (so that the whole model can be trained
jointly using backpropagation). To meet the first and the
third condition, we use another encoder (which is a neural
network with different weights and different optimization
objectives) as the competitor. At the same time, to satisfy
the second condition, we design a procedure that produces
fake networks from the original network, and feed the fake
networks to the competitor to form a “fake” representation
mechanism.

2 RELATED WORK

Besides GAN-based network embedding methods dis-
cussed in Introduction, here we introduce other major ap-
proaches along this line. GraphGAN [27] unifies generative
and discriminative thinking to generate the most likely
neighbor node representation for a given node and tries
to make the generator fit the underlying true connectivity
distribution. DGGAN [28] extends GraphGAN to directed
graph, so as to preserve the directionality of edges. ProGAN
[29] proposes a novel proximity generative adversarial net-
work for network embedding, which can generate proximi-
ties through adversarial learning. The generated proximities
can help to discover the complicated underlying proxim-
ity to improve network embedding. JANE [30] proposes
a joint adversarial network embedding framework which
jointly distinguishes the real and fake combinations of the
embeddings, topology information and node features, so
as to learn the latent semantic space and capture semantic
variations. Khajehnejad. et al [31] proposes an adversarial
graph embedding method for fair influence maximization
over social networks, which consists of an auto-encoder
for graph embedding and a discriminator for discerning
sensitive attributes, so as to guarantee fair influence maxi-
mization. AdONE [32] proposes an autoencoder framework
to learn node embeddings for networks with outliers. It
leverages adversarial learning to align the embeddings cor-
responding to the link structure and node attributes so that
they can complement each other and further weights the
objective function with outlier scores to minimize the effect
of outliers. TriATNE [33] designs a tripartite adversarial
learning model based on sales skills in the market, which
includes a producer, a seller and a customer to preserve high
order graph structure and learn more stable and robust rep-
resentation. NINE [34] gives a network embedding method
which aims to preserve node pair information between
connected and disconnected node pairs by designing two
discriminators which discriminate connected node pair and
disconnected node pair respectively. It is worth noting that
these existing GAN-based network embedding approaches
only apply adversarial learning on representation results,
which does not make full use of the essential advantage
of GAN (that is to adversarially learn the representation
mechanism rather than the representation itself).

3 PROBLEM DEFINITION

Consider an undirected, unweighted and attributed net-
work G = (V, E , X) with n nodes V = {v1, v2, . . . , vn}, a

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

set of edges E = {eij} ⊆ V × V , and a set of node attribute
X ∈ Rn×m, where m represents the number of attributes
of each node. The topological structure of G is represented
by an adjacency matrix A = [aij] ∈ Rn×n where aij = 1
if nodes vi and vj are connected, or aij = 0 otherwise.
Attribute xi ∈ Rm specifies the features or properties of
node vi. The objective of network embedding is to learn
a low-dimensional embedding matrix Z ∈ Rn×d from the
topological structure A and attributes X , whose formal
format is f : (A,X) � Z, where d is the dimension of em-
beddings. The learned embedding Z should well preserve
the topological structure A as well as attribute information
X .

4 THE APPROACH

We first give a brief overview of the proposed method, and
then introduce three elements of the model in detail. Last,
we formly propose Adversarial Representation Mechanism
Learning model (ArmGAN).

4.1 Overview
To make full use of the advantage of adversarial learning
to get an effective embedding mechanism, we propose a
novel adversarial learning framework with three players
(the encoder, the competitor and the discriminator) and
adversarially train representation mechanisms from data
space to latent space. For the encoder that represents
positive representation mechanism, we adopt a two-layer
graph convolutional network (GCN) [11] which integrates
network attributes and topology information to generate
a low-dimensional embedding Z . Furthermore, we use a
decoder and a mutual information regularity to constrain
the encoder, which can be called as autoencoder with mu-
tual information regularity (shown in the top part of Fig.
1). The decoder measures the loss of reconstructing the real
network topology by using the low-dimensional embedding
Z . The mutual information regularity lets embedding Z
represent the attribute information X to the greatest extent.
Minimizing the reconstruction loss of network topology and
maximizing the mutual information between the node at-
tributes and the embedding together can guide the encoder
to generate an effective embedding Z that contains both
topology information and attribute information naturally.
From another perspective, encoder with two-layer GCN
is limited by only gathering the information of two-order
neighbor nodes while the mutual information regularity can
capture the non-linear statistical dependence between the
real node attributes X and embedding Z. Thus, the mutual
information regularity can effectively compensate the draw-
back of the classic autoencoder. The above two points show
that the autoencoder with mutual information regularity can
play the role of positive representation mechanism well. For
the competitor which should provide a ”fake” (negative) but
competitive representation mechanism, we design a strategy
to generate “fake” network data. Meanwhile, we also use
the framework of the autoencoder with mutual information
regularity, but use a different objective function. Then we
feed the “fake” network data to the designed competitor
to form a negative representation mechanism. As the com-
petitor produces negative representation mechanism, we

A
d

v
er

sa
r
ia

l
R

e
p

r
e
se

n
ta

ti
o

n
 M

e
c
h

a
n

is
m

 L
e
a

r
n

in
g

(X, Z)
1

0

Real

Fake

Real

Fake

Discriminator

(X, Z')

Representation Mechanisms Discrimination

Encoder

X Z

Autoencoder with
Mutual Information Regularity

A

X' Z'

Negative Sample Generator

σ(Z·ZT)

Decoder

σ(Z'·Z'T)

Negative
Decoder

Â

v1v1 z1z1

v2v2
v3v3

v4v4

v5v5
v6v6

v1 z1

v2
v3

v4

v5
v6

v1v1v4v4

v3v3

v2v2

z1z1

v5v5
v6v6

v1v4

v3

v2

z1

v5
v6

Negative
Encoder

A

v1v4

v3

v2

z1

v5
v6

Negative
Encoder

A

Mutual Information
Regularity

Mutual Information
Regularity

Mutual Information
Regularity

Negative Mutual
Information
Regularity

Negative Mutual
Information
Regularity

À

Fig. 1: The structure of ArmGAN. It consists of three parts,
an autoencoder with mutual information regularity (en-
coder, decoder and mutual information regularity, shown
on the top of the figure), the representation mechanism
discrimination (discriminator, shown in the middle) and
a negative sample generator (negative encoder, negative
decoder and negative mutual information regularity, shown
on the bottom).

also call the competitor the negative sample generator as
shown in the bottom part of Fig. 1. It is worth noting that
the neural networks of the negative sample generator have
different weights from the positive sample generator, as the
objective is different. Since the negative sample generator
uses the same framework as the autoencoder with mutual
information regularity (that generates the positive repre-
sentation mechanism) and it is trained under a different
optimization objective, the negative sample generator can
generate a competitive representation mechanism. Then, the
last player, i.e., the representation mechanism discriminator
is used to distinguish the representation mechanism of the
autoencoder with mutual information regularity from that
of the negative sample generator.

Accordingly, the new model ArmGAN has a new type
of relationship among three players. The representation
mechanism discriminator distinguishes the positive and
negative representation mechanisms. The autoencoder with
mutual information regularity that generates positive rep-
resentation mechanism helps the discriminator to realize its
discrimination task, i.e., helps the discriminator to correctly
identify the positive representation mechanism as “real”.
However, the purpose of the negative sample generator is
the opposite, which is to deceive the discriminator by gen-

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

erating negative samples similar to the real representation
mechanism, i.e., it is to obstruct the discrimination task of
the discriminator. In the new system with new relationship,
the three players are trained under new objective func-
tions. The autoencoder with mutual information regularity
is trained with three objectives: a traditional reconstruction
error criterion from decoder using positive embedding Z,
a mutual information criterion from mutual information
regularity to represent the real node attribute information X
to the greatest extent, and an adversarial criterion from dis-
criminator which is to help the discriminator to identify the
positive representation mechanism as “real”. The training
of negative sample generator also has three objectives: the
reconstruction error criterion from negative decoder using
negative embeddingZ ′, a mutual information criterion from
negative mutual information regularity to represent the fake
node attribute information X ′, and an adversarial criterion
from discriminator which is to deceive the discriminator
so as to make the discrimination process difficult. Then,
the discriminator is trained by the objective that, on one
hand, discriminates the representation mechanism from au-
toencoder with mutual information regularity as “real” as
much as possible and, on the other hand, discriminates the
representation mechanism from negative sample generator
as “fake” as much as possible.

It is worth noting that this new adversarial learning
framework ArmGAN is fairly different from existing GAN-
based models for embedding which contain two players
(i.e., encoder/generator and discriminator). Concretely, in
the existing GAN-based models, only encoder/generator
hosts a representation mechanism from data space to latent
space. There is no other players that host another represen-
tation mechanism, and thus it is impossible to realize the
adversarial training on representation mechanism. On the
contrary, our new adversarial learning framework contains
three players: two of them host the real representation
mechanism and the negative representation mechanism,
respectively. These two types of representation mechanisms
can be adversarially trained. Moreover, the purpose of the
encoder/generator in the existing GAN-based models is to
deceive the discriminator by producing fake samples similar
to real ones, while the purposes of the two players that host
representation mechanisms in our new model ArmGAN are
different. The autoencoder with mutual information regu-
larity is to help the discriminator, while the negative sample
generator is to deceive the discriminator. In other words,
the goal of autoencoder with mutual information regularity
and that of the discriminator are consistent. However, the
goal of the negative sample generator is the opposite to that
of the discriminator. In this new system, the discriminator
can be thought as police, and the autoencoder with mutual
information regularity can be thought as good people, while
the negative sample generator is analogous to bad people.
The good people aim to help the police to correctly identify
them as good people. In contrast, by learning the behavior
of good people and acting like good people, the bad people
try to deceive the police to wrongly take them as good.

4.2 Autoencoder with Mutual Information Regularity
In this section, we first introduce the classical autoencoder
that includes encoder and decoder, then introduce mutual

information regularity, and finally give the whole autoen-
coder with mutual information regularity as shown in the
top part of Fig. 1.

For the autoencoder, we use the graph auto-encoder
proposed by [22]. In the encoder, we use the graph con-
volutional network (GCN), which is a flexible class of node
representation mechanism that generates node representa-
tions by aggregation over local node neighborhoods, so as
to extract the embedding of nodes. Here we use the classic
two-layer GCN. Given the adjacency matrix A and attribute
matrix X of a network, the model is constructed as

Z(1) = fRelu

(
X,A|W (0)

)
;

Z(2) = flinear

(
Z(1), A|W (1)

)
,

(1)

where Z(0) = X , and each convolutional layer is expressed
by

f
(
Z(l), A|W (l)

)
= φ

(
D̃−1/2ÃD̃−1/2Z(l)W (l)

)
. (2)

Here Ã = A + I (where I is the identity matrix) and
D̃ii =

∑
j Ãij . W

(l) denotes the weight matrix of the l-
th layer, and Z(l) is the input of the l-th layer. φ is an
activation function, and we use Relu(t) = max(0, t) in the
first layer and use linear(t) = t in the second layer. In
the decoder, we reconstruct the network topology using the
embedding derived from the encoder. With the embedding
Z(Z = Z(2)), the reconstructed graph Â can be presented
as

Â = sigmoid
(
ZZT

)
. (3)

We then use the cross entropy to define the reconstruction
loss as

LAE = −
∑

E
[
aij log Âij + (1− aij) log

(
1− Âij

)]
. (4)

In order to add the constraints of attribute information
and add the non-linear statistical dependence to the en-
coder, we introduce mutual information regularity to the
traditional autoencoder. Mutual information quantifies the
dependence of two random variables X and Z , which is
equivalent to the Kullback-Leibler (KL-) divergence between
the joint distribution of these two variables and the product
of the marginals of these two variables [35]. KL-divergence
can be expressed in two ways, including Donsker-Varadhan
representation [36] and f-divergence representation [37],
[38]. Belghazi et al. [39] gave a method to estimate mu-
tual information based on neural networks by maximizing
the lower-bound of Donsker-Varadhan representation or f-
divergence representation. Belghazi et al. [39] also showed
the expressive power of neural network insures that they
can approximate the mutual information with arbitrary ac-
curacy. To be specific, Belghazi et al. [39] trained a statistics
network as a classifier to distinguish samples coming from
the joint distribution or the product of marginals of two
random variables. The joint samples can be sampled from
the joint distribution of two variables. For the marginals of
these two variables, they can be gotten by empirical samples
or by shuffling the samples from the joint distribution [39].
In this paper, our mutual information regularity uses a
three-layer fully connected neural network to approximate
the mutual information between node attributes X and

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

master
高亮文本

master
高亮文本

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

embedding Z. The neural network can be expressed by the
function T

θ
: X×Z → R with parameter θ in some compact

domain θ ∈ Θk, where k is the dimension of the parameter
space.

We use the combination of node attributes X and the
corresponding embedding Z from the encoder, i.e., (X,Z),
as the joint distribution. To get the product of marginals,
we randomly shuffle the rows of node attributes X and
get the corrupted node attributes X̄ , and then we input
the corrupted attributes matrix X̄ into the encoder to get
the corrupted embedding Z̄. Then we use the combination
of the node attributes X and the corrupted embedding Z̄,
i.e., (X, Z̄), as the product of the marginals. In order to
obtain representative embedding, we maximize the mutual
information between node attributes X and embedding Z .
Then, according to [39], the mutual information IΘ(X,Z),
which is estimated by neural networks based on Donsker-
Varadhan representation, is defined as follows :

IΘ(X,Z) = sup
θ∈Θ

(
E(x,z)∼pxz(x,z)Tθ(x, z)

− logEx∼pdata(x),z̄∼pz̄(z̄)

(
eTθ(x,z̄)

)) (5)

where Tθ(·) is the neural network with parameter θ men-
tioned above and it is optimized by maximizing Eq. (5),
pxz(x, z) is the joint distribution of x and z, pdata(x) is the
sample distribution of x and pz̄(z̄) is a sample distribu-
tion of z̄ generated by encoder using the corrupted node
attributes X̄ and real network topology.

Now we will give the autoencoder with mutual informa-
tion regularity and define its objective function. Its overall
objective function contains two parts: one is from decoder
and the other is from mutual information regularity. The one
from decoder is to reconstruct the real network topology
by using the embedding Z generated by the encoder (i.e.,
minimizing the reconstruction loss of network topology).
The other is to let embedding Z represent real attribute
information X to the greatest extent (i.e., maximizing the
mutual information between the node attributes X and the
embedding Z). As we need to minimize the reconstruction
loss as well as maximize the mutual information, we use
the negative mutual information so that we can minimize
both. Then, we get the overall objective function of the
autoencoder with mutual information regularity which is
defined as follow:

LAMIR = LAE − β1IΘ(X,Z). (6)

where LAE is the loss of the reconstructed topology, ex-
pressed as Eq. (4). IΘ(X,Z) is the estimated mutual in-
formation, expressed as Eq. (5). β1 is a hyperparameter,
representing the proportion of the the mutual information
regularity to the total objective function LAMIR. We use
batch gradient descent to minimize this objective function.

4.3 Negative Sample Generator
In this section, we first introduce how to generate fake
network data, and then introduce the negative sample gen-
erator which also uses the framework of autoencoder with
mutual information regularity but with a different optimiza-
tion objective. In order to distinguish the negative sample
generator from the autoencoder with mutual information

regularity, we called the three components of negative sam-
ple generator as the negative encoder, negative decoder and
negative mutual information regularity as shown in the
bottom part of Fig. 1.

We design a perturbation strategy to obtain a fake net-
work data from the original network. In order to make the
generated ”fake” representation mechanism competitive,
here we choose to perturb just one type of the network
data (network topology or node attributes). Then the real
data lets the embedding represent the real data through
the corresponding constraint term (negative decoder / neg-
ative mutual information regularity). Meanwhile, the fake
data lets the embedding add some noise through the other
constraint term (negative mutual information regularity /
negative decoder). In this paper, we choose to use the real
topology and a fake attribute data, as it produces the best
results in our perturbation experiments (where different
strategies were used). To be specific, we preserve the origi-
nal topological structure but corrupt the node attributes, X ′,
via row-wise shuffling of real node attributes X .

After getting the fake network, the reconstruction loss
from negative decoder can be defined by using negative
embedding Z ′ which is generated by the negative encoder.
It is worth noting that this reconstruction loss is different
from the reconstruction loss of decoder which is defined
by positive embedding Z generated by the encoder. Specifi-
cally, the new reconstruction loss is defined by the following
cross entropy:

LAE′ = −
∑

E
[
aij log Àij + (1− aij) log

(
1− Àij

)]
(7)

where À = sigmoid
(
Z ′Z ′T

)
is the reconstructed matrix

through the negative decoder. This is different from the
reconstructed topology matrix Â = sigmoid

(
ZZT

)
men-

tioned in Section 4.2, where Â is generated by the decoder
using positive embedding Z .

Then, we give the negative mutual information regular-
ity, i.e., the other constraint term of negative encoder. This
constraint term lets the negative embedding Z ′ represent
“fake” attribute information X ′ to the greatest extent by
maximizing the mutual information between the “fake”
node attributes X ′ and the negative embedding Z ′. We
use the same method as that in Section 4.2 to estimate the
mutual information. Specifically, we use the combination of
the “fake” node attributes X ′ and the negative embedding
Z ′ , i.e., (X ′, Z ′), as the joint distribution. To get the product
of marginals, we randomly perturb the rows of the “fake”
node attributes X ′ to obtain the corrupted ”fake” node
attributes X̄ ′, and then we input the corrupted ”fake” node
attributes X̄ ′ and topological matrix A into the negative
encoder to get the corrupted “fake” embedding Z̄ ′. We use
the combination of the “fake” node attributes X ′ and the
corrupted “fake” embedding Z̄ ′, i.e., (X ′, Z̄ ′), as the product
of the marginals. Then, the mutual information I

′

Θ′(X ′, Z ′),
which is estimated by neural networks, is defined as:

I
′

Θ′(X ′, Z ′) = sup
θ′∈Θ′

(
E(x′,z′)∼px′z′ (x′,z′)T

′

θ′(x
′, z′)

− logEx′∼px′ (x′),z̄′∼pz̄′ (z̄′)

(
eT

′
θ′ (x

′,z̄′)
)) (8)

where T
′

θ′(·) is the neural networks with parameter θ′ and
is optimized by maximizing Eq. (8), px′z′(x

′, z′) is the joint

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

master
高亮文本

master
高亮文本

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

distribution of x′ and z′, px′(x′) is the sample distribution
of the fake node attributes x′ and pz̄′(z̄′) is a distribution of
samples that are generated by negative encoder which uses
the corrupted “fake” node attributes X̄ ′ and real network
topology as input.

Last, we give the negative sample generator and the
overall objective function. Specifically, the negative sample
generator is trained in the guidance of two objectives. One
is to reconstruct the real network topology by using the
negative embedding Z ′ generated by the negative encoder.
Another objective is to let negative embedding Z ′ represent
“fake” attribute information X ′ to the greatest extent by
maximizing the mutual information between the “fake”
node attributes X ′ and the negative embedding Z ′. Similar
to the discussion in Section 4.2, here we add a negative
sign to the negative mutual information regularity so as to
minimize both objectives as a whole. After getting a unified
objective function, we train the negative sample generator
by using gradient descent. The overall objective function of
the negative sample generator is then defined as:

LNSG = LAE′ − β2I
′

Θ′ (X ′, Z ′) (9)

where LAE′ is the loss of the reconstructed topology, ex-
pressed as Eq. (7). I

′

Θ′(X ′, Z ′) is the mutual information
estimated by neural networks, expressed as Eq. (8). β2 is a
hyperparameter, representing the proportion of the negative
mutual information regularity to the total objective function
LNSG.

4.4 The Representation Mechanism Discriminator

The core of our model is to adversarially learn the rep-
resentation mechanism rather than the representation re-
sult. As discussed earlier, our new framework ArmGAN
comprises two representation mechanisms, i.e., the positive
representation mechanism which is hosted by autoencoder
with mutual information regularity and the negative repre-
sentation mechanism which is hosted by negative sample
generator. The challenge is how to turn these two types
of representation mechanism into recognizable inputs of
the representation mechanism discriminator. In fact, the
representation mechanism can be regarded as a mapping
mechanism. According to [40], the mapping mechanism
can be expressed approximately by the combination of the
input and output of the mapping, which is much easier
to track. Therefore, we use the combination of the node
attributes (input of the mapping) and embedding (output of
the mapping) as the recognizable input of the discriminator
to represent our representation mechanism. The task of the
representation mechanism discriminator (as shown in the
middle part of Fig. 1) is to distinguish the representation
mechanism of the autoencoder with mutual information
regularity (which can be called as the positive sample gen-
erator) from that of the negative sample generator.

Specifically, for the positive representation mechanism,
we use the combination of the attribute information (the
input of the positive sample generator) and the node repre-
sentation (the output of the positive sample generator) ,i.e.,
(X,Z), to represent it. As for the negative representation
mechanism, we adopt two ways to implement it. Each

way has its own characteristics, and is suitable for solving
different network analysis tasks.

Direct mapping representation mechanism. When using this
way to implement the negative representation mechanism,
we concatenate the input X ′ of the negative sample gener-
ator (i.e., the “fake” node attributes X ′ which are obtained
by randomly shuffling the node attribute X) and output
Z ′ of the negative sample generator (i.e., the corresponding
embedding which is generated by the negative sample
generator based on the “fake” node attributions X ′), i.e.,
(X ′, Z ′), as the negative mapping mechanism. The task of
the discriminator is to distinguish the positive represen-
tation mechanism (i.e., the mapping mechanisms sampled
from the autoencoder with mutual information regularity)
from the negative representation mechanism (i.e., the map-
ping mechanisms sampled from the negative sample gener-
ator). The discriminator outputs a single scalar which rep-
resents the probability that the representation mechanism
came from the autoencoder with mutual information regu-
larity rather than negative sample generator. We train the
discriminator so as to maximize the probability of assigning
the correct label to both positive representation mechanism
(X,Z) and the negative representation mechanism (X ′, Z ′).
In other words, the discriminator attempts to discriminate
the negative representation mechanism samples as 0, and
the positive representation mechanism samples as 1. It is
worth noting that the larger the objective function of the
discriminator, the better. This is different from the objective
functions mentioned in the previous section, such as the
objective function of autoencoder with mutual information
regularity and the objective function of negative sample
generator, which are the smaller the better. Then, we give
the definition of the objective function of the discriminator
under the direct mapping representation mechanism:

VDX′ =Ex∼pdata(x) [logD (x,E(x))]

+ Ex′∼px′ (x′) [log (1−D (x′, E′(x′)))]
(10)

where E(x) and E′(x′) represent the outputs of the encoder
and the negative encoder, i.e., embedding z and z′. D(·)
represents the output of the discriminator.

Mutual information representation mechanism. When using
this way to implement the negative representation mech-
anism, we concatenate the real node attribute X and the
output Z ′ of the negative sample generator based on “fake”
node attributes X ′, i.e., (X,Z ′), as the negative mapping
mechanism. Then, we give the definition of the objec-
tive function of the discriminator under this representation
mechanism:

VDX =Ex∼pdata(x) [logD (x,E(x))]

+ Ex′∼px′ (x′) [log (1−D (x,E′(x′)))]
(11)

where E(x) and E′(x′) represent the outputs of the encoder
and the negative encoder respectively, i.e., embedding z and
z′. D(·) represents the output of the discriminator. Here
we maximize this objective function so as to maximize the
probability of assigning the correct label to both positive
representation mechanism and the negative representation
mechanism (hence the larger the better).

From another perspective, the combination of real node
attributes X and embedding Z (i.e., E(X)) generated by

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

encoder can be seen as the joint distribution, and the
combination of real node attributes X and embedding Z ′

generated by the negative encoder based on “fake” node
attributes X ′ can be seen as the product of the marginals.
According to [37], Eq. (11) can be seen as a measure of
the JensenShannon (JS) divergence (one of the f-divergence
introduced in Section 4.2) between the joint and the product
of the marginals, which actually can be seen as an estimate
of the mutual information based on f-divergence represen-
tation between node attributes X and embedding Z . Thus,
we call it mutual information representation mechanism.

Mutual information [41] can capture the inherent de-
pendence and maximal relevance between the real node
attributes X and embedding Z. And encoder actually
is a compression mechanism which compresses high-
dimensional data into low-dimension data. The above two
points encourage the encoder to retain the most represen-
tative information in the low-dimensional embedding Z.
ArmGAN with mutual information representation mecha-
nism is equivalent to adding another mutual information
constraint which is implemented by GAN framework. This
mutual information constraint is another type of mutual in-
formation which is based on the f-divergence representation
and is different from the mutual information regularity used
in Sections 4.2 and 4.3, which is based on DV-representation.
The model with two mutual information constraint terms
can strengthen the power of the model for extracting more
representative features. Therefore, it is more suitable for the
tasks of node classification and node clustering. In the Ar-
mGAN with direct mapping representation mechanism, the
negative representation mechanism is represented by “fake”
node attribute X ′ and its corresponding embedding Z ′. The
embedding Z ′ is generated based on a “fake” network with
perturbed node attribute X ′ and real network topology A,
which is equivalent to moving the attributes of high-order
(or remote) neighbor nodes to the positions of direct (first-
order) neighbors. Thus, the negative sample generator can
collect the information of high-order or remote neighbor
nodes, and further pass this type of information to the
positive sample generator by generative adversarial learn-
ing. Therefore, the embedding Z contains more information
(not only information of local neighbors but also that of
remote neighbors) which is more conducive for measuring
the similarity of two nodes and further predicting whether
there is an edge between these two nodes. ArmGAN with
direct mapping representation mechanism is more suitable
for the task of link prediction. This is also demonstrated by
the link prediction experiments.

4.5 Adversarial Representation Mechanism Learning
(ArmGAN)

In this section, we will give the whole ArmGAN model.
The whole training process of ArmGAN contains two parts,
i.e., the generation process and discrimination process. In
the generation process, we train the autoencoder with mu-
tual information regularity and negative sample generator
together. In the discrimination process, we only train the
representation mechanism discriminator.

In the generation process, we first show how to train
the autoencoder with mutual information regularity. Before

doing so, let us first review its role in the whole model.
The task of autoencoder with mutual information regularity
is to help the discriminator to realize its discriminative
task, i.e., to help the discriminator to correctly predict the
positive representation mechanism samples (X,Z) as 1. The
goal of the encoder and the goal of the discriminator are
consistent. We can define the adversarial training criterion of
encoder from discriminator, which is based on the feedback
of discriminator and is the same as the first term of the
objective function of the discriminator:

VED = Ex∼pdata(x) [log (D (x,E(x)))] (12)

In fact, in the whole model, the encoder is not only affected
by discriminator through generative adversarial learning
but also affected by the decoder and mutual information
regularity through two constraint terms, which are ex-
pressed in Eq. (6). As the goal of the encoder is consistent
with that of the discriminator, Eq. (12) should be maximized,
while as we mentioned in Section 4.2 Eq. (6) should be
minimized. To minimize both, we add a negative sign to
Eq. (12), then we get the overall objective function of the
encoder:

LE = −VED + α1LAE − β1IΘ(X,Z). (13)

In Eq. (13), we add a hyperparameter α1 to the recon-
struction loss which represents the proportion of the re-
construction loss to the total objective function LE . And β1

represents the proportion of mutual information regularity
to the total objective function LE .

Next we will show how to train the negative sample
generator. The goal of the negative sample generator is to
deceive the discriminator so that the discriminator wrongly
predicts the negative representation mechanism samples
(X ′, Z ′) or (X,Z ′) as 1. Obviously, the goal of the negative
encoder is opposite to that of the discriminator. We can
define the adversarial training criterion of negative encoder
from discriminator, which is opposite to the second term of
the objective function of discriminator. As the discriminator
is to maximize this term, the negative encoder aims to mini-
mize this term, which is just opposite with the discriminator:

LE′
dD

= Ex′∼px′ (x′) [log (1−D (x′, E′ (x′)))]

or
LE′

mD = Ex∼pdata(x),x′∼px′ (x′) [log (1−D (x,E′(x′)))]

(14)

where LE′
dD

is for using direct mapping representation
mechanism, and LE′

mD is for using mutual information
representation mechanism.

However, according to [20], Eq. (14) may not provide
gradient that is large enough to update the negative encoder.
Concretely, in the early stage of its learning, when nega-
tive encoder is poor, the discriminator can reject samples
with high confidence because they are clearly different
from the positive samples which are generated by au-
toencoder with mutual information regularity. In this case,
log (1−D (x′, E′ (x′))) or log (1−D (x,E′(x′))) saturates
and, as a result, their gradient will be close to zero. In order
to solve this problem, we redefine the adversarial training

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

criterion according to the improved strategy proposed by
[20]:

LE′
dD

= −Ex′∼px′ (x′) [log (D (x′, E′(x′)))]

or
LE′

mD = −Ex∼pdata(x),x′∼px′ (x′) [log (D (x,E′ (x′)))]

(15)

where LE′
dD

and LE′
mD are the adversarial criterion of the

negative encoder for using the direct mapping representation
mechanism and the mutual information representation mecha-
nism. This objective function results in the same fixed point
of the dynamics of negative encoder and discriminator but
provides much larger gradients early in learning. This rede-
fined adversarial criterion of negative encoder also should
be minimized.

In the whole ArmGAN model, like the positive encoder,
the negative encoder is not only affected by discriminator
but also by the negative decoder and negative mutual infor-
mation regularity. The constraint terms from the negative
decoder and negative mutual information regularity are
defined in Eq. (9), which also should be minimized like the
adversarial criterion for the negative encoder. Then, we can
define the overall objective function of the negative encoder
as:

LE′
d

= LE′
dD

+ α2LAE′ − β2I
′

Θ′(X ′, Z ′)

or

LE′
m

= LE′
mD + α3LAE′ − β3I

′

Θ′(X ′, Z ′)

(16)

where LE′
d

and LE′
m

are the objective functions of the neg-
ative encoder using the direct mapping representation mecha-
nism and the mutual information representation mechanism. We
add hyperparameters α2 (and α3) to the reconstruction loss
which represents the proportion of the reconstruction loss
to the total objective function LE′

d
(and LE′

m
). β2 (and β3)

represents the proportion of negative mutual information
regularity to the total objective function LE′

d
(and LE′

m
).

Now, we can give the overall objective function of the
generation process as follows:

min
E,T,E′,T ′

(
LE + LE′

d

)
or

min
E,T,E′,T ′

(
LE + LE′

m

) (17)

In the discrimination process, we train the discriminator
to maximize the probability of assigning the correct label
to both positive samples from autoencoder with mutual
information regularity and negative samples from negative
sample generator. As mentioned in Section 4.4, the objective
function of the discriminator using the direct mapping rep-
resentation mechanism and mutual information representation
mechanism are defined by Eq. (10) and Eq. (11). Then the
objective function of the discrimination process is given by

max
D

VDX′

or
max
D

VDX

(18)

The definitions of VDX′ and VDX are in Eq. (10) and Eq. (11)
in Section 4.4.

To sum up, in the whole process of adversarial learn-
ing, the autoencoder with mutual information regularity,

the negative sample generator and the discriminator are
trained alternately. That is, when training the autoencoder
with mutual information regularity and the negative sample
generator, the discriminator is fixed. Alternatively, when
training the discriminator, the autoencoder with mutual
information regularity and the negative sample generator
are fixed. This iterative process continues until convergence.
The detailed algorithm description of ArmGAN is provided
in Appendix.

5 EXPERIMENTS

In this section, we first give the experimental setup, then
compare the new approach ArmGAN with some state-of-
the-art methods on four network analysis tasks, i.e., node
classification, node clustering, link prediction and network
visualization. Next, we give the parameter analysis and
perturbation strategy analysis. Last we provide the conver-
gence analysis.

5.1 Experimental setup

Datasets. Seven publicly available datasets1 with varying
sizes and characteristics are used, which are representative
of two types of networks: webpage networks (Cornell,
Texas, Washington and Wisconsin from the WebKB dataset)
and citation networks (Citeseer, Cora and Pubmed). The
WebKB dataset is made up of webpages from four univer-
sities (Cornell, Texas, Washington and Wisconsin), in each
of which the nodes are partitioned into five groups. For
the citation network dataset, the nodes are articles, edges
are citations, and the articles are partitioned into different
research areas. Other information of seven datasets is sum-
marized in Table 1.

TABLE 1: Datasets Information.

Dataset Nodes Edges Classes Attributes

Cornell 195 304 5 1,703
Texas 183 328 5 1,703
Washington 217 446 5 1,703
Wiscosin 262 530 5 1,703
Citeseer 3,312 4,732 6 3,703
Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500

Baseline methods. We compare the proposed methods
against the 10 state-of-the-art network representation meth-
ods. As we mentioned in the method part, our ArmGAN
model has two versions, i.e., 1) the discrimination process
using direct mapping representation mechanism and 2)
the discrimination process using mutual information rep-
resentation mechanism, which are called as ArmGANd and
ArmGANm, respectively.

1) DeepWalk [1] is a unsupervised method that adopts
random walk and Skip-Gram to learn node repre-
sentation.

2) node2vec [14] is a variant of DeepWalk and designs
a biased random walk to learn node representation.

1. https://linqs.soe.ucsc.edu/data

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

3) LINE [2] is also a popular unsupervised method that
preserves the first-order and second-order proxim-
ity among nodes in the graph.

4) GraRep [3] adopts matrix factorization method to
learn node representation.

5) AANE [19] models and incorporates node attribute
proximity into network embedding.

6) TriDNR [18] learns node representations by cou-
pling multiple neural network models to jointly
exploit the network structure, node-content corre-
lation, and label-content correspondence.

7) SNE [17] preserves the structure proximity and at-
tribute proximity of social networks and generates
nodes embedding.

8) VGAE [22] is the variational graph autoencoder for
graph embedding with both topological and content
information.

9) ARVGA [21] uses adversarially regularized varia-
tional autoencoder algorithm to learn the embed-
ding.

10) DGI [13] is a recently proposed unsupervised GNN
method which learns node representation by maxi-
mizing the mutual information between patch rep-
resentation and global representation.

Parameter settings. For all the algorithms compared, the
final embedding dimension is set to 128 for WebKB dataset,
and 256 for Cora, Citeseer and Pubmed as the citation
networks are much larger than the webpage networks. For
the hyperparameters of our model, we set the α1, α2, α3,
β1, β2, β3 to 1, 1, 1, 0,01, 0.01, 0.01 respectively, which
are often stable and give good results. To ensure fairness,
the parameters of the baseline methods were set as what
were used by their authors. In our approach ArmGAN, we
set the number of samples s as the number of nodes as
used in most mutual information estimation methods [13],
[35]. For both encoder and negative encoder, we use the
classic two-layer GCN and use ReLU(·) as the activation
function. For the representation mechanism discriminator
and neural networks of mutual information regularity and
the negative mutual information regularity, we use three-
layer fully connected neural network and use ReLU(·) as
the activation function. We apply the pytorch deep learning
tools and use Adam optimizer to learn the model for 400
epochs. Both the learning rate and discriminator learning
rate are set to 0.001.

5.2 Node classification
In node classification, each node is assigned with one label.
A fraction of nodes and their labels are observed, and
the labels of the remaining nodes need to be predicted.
Therefore the performance of node classification can reveal
the distinguishability of nodes under different network
representation learning methods. After getting the network
embedding, we adopt the LibSVM and LibLINEAR software
packages in Weka to classify these nodes with ground-truth.
For each network, we used 10-fold cross-validation, and
report accuracy (AC) [42] with mean value and standard
deviation.

The experimental results are presented in Table 2. The
results show that our proposed ArmGAN with mutual

TABLE 2: Comparison on node classification with mean
value and standard deviation in terms of AC (%). The best
result is marked in bold and the second best is underlined.

Packages Methods Cornell Texas Washington Wisconsin Cora Citeseer Pubmed

LibSVM

DeepWalk 38.97±0.17 49.18 ±0.18 55.30±0.14 49.24±0.22 82.57±0.01 52.52±0.06 78.79±0.02
node2vec 35.90±0.19 50.27±0.18 47.47±0.14 46.56±0.10 79.98±0.05 61.63±0.13 80.30±0.22
LINE 43.59±0.06 56.28±0.12 59.91±0.11 54.58±0.15 30.20±0.05 41.07±0.11 75.47±0.008
GraRep 53.33±0.15 62.68±0.11 52.07±0.19 59.16±0.24 73.41±0.22 54.28±0.24 80.64±0.19
AANE 51.80±0.17 56.28±0.11 64.06±0.09 43.13±0.07 30.20±0.10 24.70±0.03 78.63±0.10
TriDNR 37.95±0.16 48.09±0.10 47.01±0.15 40.46±0.20 43.27±0.09 54.47±0.08 79.07±0.12
SNE 48.21±0.29 57.92±0.18 54.38±0.11 59.54±0.15 49.00±0.01 44.74±0.04 78.37±0.09
VGAE 45.12±0.09 55.00±0.12 54.38±0.06 53.82±0.12 81.05±0.19 65.97±0.05 83.42±0.11
ARVGA 42.56±0.12 56.28±0.16 58.99±0.10 49.26±0.19 80.42±0.06 65.10±0.05 80.64±0.008
DGI 42.56±0.23 56.28±0.04 47.47±0.04 45.42±0.11 84.15±0.02 71.84±0.06 79.19±0.007
ArmGANm 54.35±0.05 64.48±0.09 65.89±0.08 60.69±0.05 88.95±0.04 73.07±0.05 86.31±0.004
ArmGANd 51.28±0.08 60.65±0.07 61.75±0.09 59.16±0.09 88.77±0.02 72.88±0.04 85.99±0.007

LibLINEAR

DeepWalk 38.46±0.03 48.09±0.17 53.92±0.14 49.62±0.07 82.04±0.02 48.42±0.05 78.36±0.03
node2vec 37.95±0.19 50.27±0.16 45.62±0.14 46.95±0.17 80.79±0.11 52.44±0.17 80.08±0.01
LINE 44.10±0.17 53.39±0.16 56.22±0.08 54.96±0.18 50.25±0.01 40.56±0.08 74.92±0.02
GraRep 47.17±0.08 59.40±0.06 51.15±0.09 60.31±0.23 79.83±0.13 53.61±0.28 80.37±0.15
AANE 41.54±0.17 53.01±0.09 61.75±0.10 38.93±0.05 27.03±0.04 22.24±0.02 77.99±0.09
TriDNR 34.87±0.13 42.08±0.08 43.32±0.17 41.60±0.23 53.39±0.08 52.91±0.09 78.40±0.008
SNE 45.64±0.10 59.02±0.16 55.76±0.29 59.92±0.25 54.46±0.03 44.35±0.07 77.20±0.04
VGAE 45.64±0.10 51.91±0.05 54.84±0.03 54.49±0.11 79.13±0.05 69.25±0.05 83.81±0.02
ARVGA 41.54±0.11 59.02±0.06 60.37±0.09 56.11±0.18 81.24±0.06 66.71±0.03 80.59±0.007
DGI 43.08±0.13 56.28±0.09 52.07±0.03 48.47±0.18 85.22±0.02 73.85±0.05 84.22±0.09
ArmGANm 51.79±0.09 62.30±0.07 62.21±0.09 61.07±0.07 88.55±0.09 75.99±0.03 86.10±0.003
ArmGANd 50.76±0.09 61.20±0.04 60.82±0.08 59.54±0.12 87.92±0.02 75.02±0.06 85.83±0.003

information mechanism (ArmGANm) outperforms all the
baselines on all datasets. On average, ArmGANm outper-
formed the state-of-the-art network representation method
DGI in node classification by 8.37% using LibSVM and by
6.34% using LibLINEAR. In addition, ArmGANm outper-
formed the GAN based method ARVGA (which matches
the distribution of representation to Gaussian distribution)
in node classification by 8.64% using LibSVM and by 6.06%
using LibLINEAR on seven networks on average. This also
validates applying the adversarial learning strategy on the
representation mechanism is better than applying the adver-
sarial strategy on representation results.

Although the ArmGAN with direct mapping representa-
tion mechanism (ArmGANd) is not as good as ArmGANm,
ArmGANd outperforms all the baselines on 3 out of 7
datasets in LibSVM and 5 out of 7 datasets in LibLIN-
EAR. As mentioned in the Section 4.4, ArmGANm has
two mutual information constrain terms: one is based on
DV-representation and the other is based on f-divergence
representation implemented by adversarial representation
mechanism learning. This can further help the encoder
to extract more representative information which may be
more suitable for the node classification task. Therefore,
ArmGANm can perform better than ArmGANd in node
classification.

5.3 Node clustering
In node clustering, we aim to assign distinct cluster to each
node with no supervision. To conduct the experiment, we
first train all the algorithms to obtain the network em-
bedding. After that, we applied k-means algorithm to the
embedding results of nodes to cluster them into different
classes. For node clustering (a.k.a., community detection),
besides accuracy [42], we also use normalized mutual in-
formation (NMI) [43] as an additional accuracy metric since
NMI has been more often used in node clustering.

The experimental results are shown in Table 3. As shown,
our proposed ArmGANm performs the best on 6 out of 7
datasets in terms of both AC and NMI. ArmGANd performs
the best on 1 out of 7 networks in terms of both AC and

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

TABLE 3: Comparison on node clustering in terms of AC(%)
and NMI(%).

Metrics (%) Methods Cornell Texas Washington Wisconsin Cora Citeseer Pubmed

AC

DeepWalk 36.05 46.72 40.76 38.76 45.61 36.21 64.84
node2vec 33.85 47.54 37.33 49.62 56.30 40.76 65.56
LINE 39.49 53.38 52.68 45.43 30.72 25.01 43.11
GraRep 31.79 36.72 31.36 33.24 48.29 31.20 54.43
AANE 37.28 30.49 41.57 30.53 18.51 21.76 34.55
TriDNR 38.21 47.54 43.59 43.70 31.56 34.44 59.29
SNE 41.08 41.53 48.80 55.30 39.44 31.17 65.13
VGAE 36.72 48.35 43.73 43.28 57.06 53.46 58.64
ARVGA 38.21 41.48 43.66 42.81 64.08 43.50 58.76
DGI 38.87 53.55 48.75 44.27 71.93 68.76 65.21
ArmGANm 54.36 60.66 60.83 56.49 76.11 70.18 71.55
ArmGANd 48.20 56.28 60.82 58.01 74.04 67.77 70.96

NMI

DeepWalk 7.06 6.16 5.66 7.65 31.51 10.58 25.55
node2vec 6.65 4.49 2.94 7.86 42.02 12.99 25.02
LINE 9.27 18.16 18.95 9.39 10.13 5.62 7.17
GraRep 8.80 12.43 5.18 8.02 35.46 9.61 17.76
AANE 9.55 3.52 13.19 2.86 0.40 1.19 0.01
TriDNR 7.20 4.32 8.10 6.60 12.19 9.59 19.28
SNE 11.11 12.63 17.43 18.94 16.28 7.31 25.61
VGAE 7.77 8.52 9.03 9.31 42.92 27.93 17.83
ARVGE 10.26 7.28 12.60 11.92 44.95 22.72 18.40
DGI 13.99 14.05 13.93 13.22 56.52 44.32 25.77
ArmGANm 21.07 18.42 25.91 19.72 58.43 44.56 33.70
ArmGANd 15.24 13.55 25.82 19.94 58.22 42.89 32.91

NMI and performs the second best in 5 out of 7 datasets
in terms of AC and 4 out of 7 datasets in terms of NMI.
On average, ArmGANm outperforms DGI which is well-
known for its high accuracy in node clustering by 8.40%
in terms of AC and 5.71% in terms of NMI on all seven
networks. In addition, ArmGANm performs better than the
classical GAN based method ARVGA by 16.81% in terms
of AC and 13.38% in terms of NMI on all 7 networks on
average. The superior performance of our ArmGAN over
the state-of-the-art methods validates the effectiveness of
the new approach, and further demonstrates the superiority
of adversarial representation mechanism over adversarial
representation results.

5.4 Link Prediction

In the task of link prediction, our goal is to predict whether
there exists an edge between two give nodes. This task
shows the performance of edge predictability of different
network representation learning methods. All methods are
trained on an incomplete version of these datasets where
some of the edges have been removed, while all node
attributes are kept. After training, we obtain the represen-
tation vectors for all nodes and use inner product method
to predict the probability of edge existence for a given node
pair. The test set consists of the 10% removed edges (node
pairs) in the original network as the positive samples and
randomly selected disconnected node pairs as negative sam-
ples, where the number of positive and negative samples
are the same. The validation set contains 5% edges, which
is used for fine tuning the hyperparameters. The remaining
85% edges of the original network are taken as the training
set. For link prediction experiments, we report the area
under the ROC curve (AUC) [22] and average precision (AP)
[22] scores for each method on the test set. We conduct each
experiment 10 times and report the mean values as the final
scores.

The experimental results on link prediction are shown
in Table 4. As shown, ArmGANd performs the best on all 7
datasets in terms of AUC and 6 out of 7 datasets in terms
of AP. ArmGANm performs the best on 1 out 7 datasets in

TABLE 4: Comparison on link prediction in terms of AUC
and AP.

Metrics (%) Methods Cornell Texas Washington Wisconsin Cora Citeseer Pubmed

AUC

DeepWalk 52.34 49.15 54.44 62.32 83.10 80.50 84.40
node2vec 70.99 55.30 56.63 69.43 77.39 67.31 78.03
LINE 63.05 50.52 57.51 57.29 63.27 57.88 66.02
GraRep 43.87 44.42 45.57 45.43 55.31 69.03 46.33
AANE 52.38 46.68 45.86 53.88 50.64 52.27 50.30
TriDNR 50.14 48.32 49.98 58.53 81.25 76.78 86.00
SNE 52.99 51.57 49.89 54.07 84.68 83.09 75.52
VGAE 82.94 80.88 75.54 83.30 92.38 91.44 94.46
ARVGA 83.92 76.45 77.00 68.78 92.80 92.41 96.11
DGI 85.92 86.50 79.13 86.44 92.96 94.95 95.80
ArmGANm 88.56 89.16 80.06 89.64 94.29 95.46 95.64
ArmGANd 91.32 89.70 81.47 91.01 94.99 96.81 96.70

AP

DeepWalk 63.21 51.87 55.28 69.21 85.00 83.60 84.10
node2vec 72.63 57.31 68.39 70.75 74.61 68.09 76.97
LINE 64.42 53.95 60.07 58.53 70.87 66.13 69.61
GraRep 47.42 47.35 47.89 47.73 52.89 64.11 48.26
AANE 56.92 50.84 50.99 54.88 51.80 52.37 54.34
TriDNR 55.44 52.65 54.32 66.71 85.65 80.93 85.64
SNE 51.51 50.98 49.51 52.23 76.85 75.30 78.73
VGAE 85.99 85.71 80.55 85.68 93.51 92.66 94.86
ARVGA 85.54 81.06 83.66 76.25 92.99 93.48 96.29
DGI 87.27 88.90 81.42 87.60 92.18 95.05 95.38
ArmGANm 91.90 92.09 86.25 90.03 94.55 96.13 95.64
ArmGANd 92.55 93.23 85.98 92.97 95.26 96.79 96.34

terms of AP and performs the second best on 6 out of 7
datasets in terms of AUC and 5 out of 7 datasets in terms
of AP. For all 7 datasets, ArmGANd is on average 2.90%
and 7.79% more accurate in terms of AUC and 3.61% and
6.26% more accurate in terms of AP than DGI and ARVGA,
respectively.

It is worth noting that ArmGANd performs better than
ArmGANm in link prediction in almost all dataset, which
is different from the experiments on node classification and
node clustering. This is because ArmGANd can capture not
only the information of local neighbors but also that of re-
mote neighbors, which is more conducive for measuring the
similarity of two nodes and further doing link prediction.
Therefore, ArmGANd has a better performance in the task
of link prediction.

5.5 Visualization

To further illustrate that the embedding from our method is
an accurate representation, we also visualize the embedding
results of all methods in the Cora dataset as an example. We
use the t-SNE [7] tool to down scale the result of embedding
representation to two dimensions and draw a color for each
categorical label. Therefore a desirable visualization result
refers to that nodes belonging to the same category (in
same color) should be close to each other. The result of
visualization is given in Fig. 2.

As shown in Fig. 2, the results of DeepWalk, LINE,
node2vec and AANE are less satisfactory since the points
of different categories are mixed with each other. The re-
sults of VGAE, ARVGA, DGI are relatively better as the
clusters of points with the same color can be observed to
form segmented groups, but the borders are not very clear.
We observe that our proposed ArmGANm and ArmGANd

can make relatively clear separation between different cat-
egories. In other words, nodes in the same color are
roughly gathered together. This visualization validates that
our model can obtain a better representation, and further
demonstrates the superiority of our proposed model.

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

(a) Deepwalk (b) node2vec (c) LINE

(d) GraRep (e) TriDNR (f) SNE

(g) AANE (h) VGAE (i) ARVGA

(j) DGI (k) ArmGANm (l) ArmGANd

Fig. 2: Visualization of different network embedding meth-
ods on the Cora dataset

5.6 Parameter Analysis

In this section, we will analyze the impact of the hyperpa-
rameters of our ArmGAN model using node clustering task
as an example. The role of hyperparameters of ArmGANm

and ArmGANd are similar. For simplicity, here we only
analyze the hyperparameters of ArmGANm. The hypterpa-
rameters of ArmGANm are α1, α3, β1 and β3, where α1

and α3 weight the reconstruction losses for the autoencoder
with mutual information regularity and negative sample
generator in the objective function. β1 and β3 weight mutual
information regularity and negative mutual information
regularity in the objective function. To study the impact of
the individual parameter on the clustering result, we just
vary the target parameter, with other three parameters are
fixed. The results are shown in Fig. 3. In each figure, X
axis denotes different values of hyperparameter and Y axis
represents the clustering accuracy, i.e., AC, and the results
of NMI which is similar with AC are provided in Appendix.

As is shown in Fig. 3, the AC scores on these datasets are
rather steady with the changing values of the hyperparam-
eters. This indicates that these hyperparameters have little

(a) The impact of α1 on AC (b) The impact of α3 on AC

(c) The impact of β1 on AC (d) The impact of β3 on AC

Fig. 3: The impacts of hyperparameters α1, α3, β1, β3 of
ArmGANm in node clustering performance on Cora, Cite-
seer and Pubmed datasets.

impact on the performance of the proposed approach. The
results show that our proposed method is not so sensitive
to changes of the hyperparameters, and further demonstrate
the robustness of our proposed ArmGAN.

5.7 Perturbation Strategy
In this section, we investigate how different perturbation
strategies and different degrees of perturbation influence
the performance of the proposed approach. Here we take
node clustering as an example. As the perturbation for
ArmGANm and ArmGANd are similar, here we only use
ArmGANm for illustration.

First, we test the impact of perturbation on network
topology, attribute information and their combination, re-
spectively. We first consider perturbation on attribute in-
formation, which is implemented by randomly corrupting
the attributes X via row-vise shuffling. In this case, while
the fake network has the same topology with the original
one, they have different features. We called this perturbation
strategy as ArmGANX. Then we consider perturbation on
network topology which preserves the original features
X but adds or removes edges from the adjacency matrix
(A′ 6= A) with a certain probability. In specific, we first gen-
erate a random graph M which has the same nodes as the
original graph and the edge existence probability between
any node pair is defined as ρ (here we let ρ be the inverse
of the number of nodes). We then obtain the corrupted
adjacency matrixA′ = A⊕M where⊕ is the XOR (exclusive
OR) operation. This strategy produces a fake network with
the same features, but different connectivity. We called this
perturbation strategy as ArmGANA. At last, we consider
simultaneous feature shuffling (X ′ 6= X) and adjacency
matrix perturbation (A′ 6= A), which are implemented
using the ways described above. We called it ArmGANXA.
The results for using these three perturbation strategies are
shown in Table 5. The results show that ArmGAN using

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

TABLE 5: Node clustering performance with different per-
turbation strategies.

Metrics (%) Methods Cornell Texas Washington Wisconsin Cora Citeseer Pubmed

AC
ArmGANX 54.36 60.66 60.83 56.49 76.11 70.18 71.55
ArmGANA 50.76 59.56 57.14 52.29 74.85 67.41 68.77
ArmGANXA 45.12 60.65 58.98 52.29 74.66 65.94 70.43

NMI
ArmGANX 21.07 18.42 25.91 19.72 58.43 44.56 33.70
ArmGANA 15.14 15.56 18.34 15.86 57.08 41.26 30.54
ArmGANXA 14.60 17.86 19.77 17.73 58.17 41.44 32.91

(a) ArmGANX (b) ArmGANA

(c) ArmGANXA

Fig. 4: The impacts of differ-
ent degrees of perturbation in
node clustering. γ represents
the ratio of the perturbed at-
tributes and ρ represents the
reverse probability of each el-
ement in adjacency matrix A.

(a) Cora (b) Citeseer

(c) Pubmed

Fig. 5: The impacts of
shuffling neighboring nodes
or non-neighboring nodes
in node clustering on Cora,
Citeseer and Pubmed.

the first strategy performs better than using the other two
strategies on these datasets. This may be because network
topology is more reliable than attribute information for
network related tasks. Thus, using real network topology
in the ”fake” network can provide more useful information
for network embedding.

Then, we investigate the influence of different degrees
of perturbation under each strategy. Specifically, for per-
turbation on attribute information, we vary the proportion
of perturbed nodes from 10% to 100% with increment of
10%. For perturbation on network topology, we vary the
probability ρ from 0.1 to 1 with increment of 0.1 (the prob-

ability ρ means that each element in adjacency matrix A is
reversed with probability ρ, i.e., if there is an edge between
two nodes, they will be disconnected with probability ρ, and
vice versa). For perturbation on both attribute information
and network topology, the perturbation ratio of attributes
and the reversed probability change simultaneously from
10% (0.1) to 100% (1). In order to reduce the influence of
randomness, we generate 20 network instances randomly
for each degree of perturbation and calculate the mean of
the performance on these networks. The results are shown
in Fig. 4. As shown, in the beginning, when the degree
of perturbation is small, the results are relatively poor
and they gradually become better as perturbation degree
increases. And then, the results slightly drop, as the degree
continues increasing. One possible explanation for the above
observation is that, when the degree of perturbation is small
(such as close to 0), the fake network is very much similar
to the original network. It is difficult for the discriminator
to learn. Conversely, when the degree of perturbation is
very large (such as close to 1), the fake network is very
much different from the original network. Thus the model
may not necessarily learn the meaningful representation to
distinguish the two. The results show that for perturbation
on attribute information, the algorithm performs the best
when the perturbation ratio is between 60% and 70% and for
perturbation on network topology, the algorithm performs
the best when the probability ρ is between 0.5 and 0.6. For
perturbation on both of them, the algorithm performs the
best when they are between 60% (0.6) and 70% (0.7).

Furthermore, for attribute shuffling strategy, as shuffling
attributes of neighboring nodes or non-neighboring nodes
may be different, we conduct additional experiments to
validate this. We randomly select part of nodes (the percent-
age of selected nodes varies from 0.1 to 1 which is similar
to the approach discussed above). For each selected node,
we swap its attribute with one of its neighbors or non-
neighbors. We also generate 20 network instances for each
specific percentage value and report the mean performance
result. The results are shown in Fig. 5. As shown, in most
cases shuffling non-neighboring nodes can achieve better
performance than shuffling neighboring nodes.

5.8 Convergence Analysis

Finally, we investigate the convergence of ArmGAN. The
experimental result is shown in Fig. 6, where the X axis
represents the iteration numbers and Y axis represents the
NMI and AC scores evaluated in node clustering task. Here
we choose Citeseer, which is relatively large among all the
7 networks, as the dataset for convergence analysis exper-
iments. As shown in Fig. 6, the AC and NMI have similar
changing trends. They fluctuate in the very beginning, and
gradually increase as training proceeds. In the end, when the
iteration number is close to 100, the AC and NMI converge
to a steady state.

6 CONCLUSION AND DISCUSSION

In this paper, we propose a new generative adversarial
framework for network embedding called ArmGAN, which
uses adversarial learning strategy on the representation

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

(a) ArmGANm (b) ArmGANd

Fig. 6: Results of convergency analysis in node clustering on
Citeseer dataset

mechanism rather than on embedding results so as to better
utilize the essential advantage of GAN on network embed-
ding. The new generative adversarial framework contains
three players: the autoencoder with mutual information reg-
ularity which hosts the positive representation mechanism,
the negative sample generator which hosts the negative
representation mechanism, and the discriminator. This is
different from the existing GAN framework for network
embedding that includes only two players, and only one
player realizes the representation mechanism. Furthermore,
the goal of the autoencoder with mutual information reg-
ularity is consistent with the goal of discriminator, i.e.,
helping the discriminator to identify its samples as real
representation mechanism, while the goal of the negative
sample generator is opposite to that of the discriminator,
i.e., deceiving the discriminator. The method proposed is
evaluated on 7 real datasets with different scales for differ-
ent network analysis tasks. Experimental results show that
the new method significantly outperforms the state-of-the-
art methods including a typical GAN based method and a
mutual information based method.

In real world, for some networks, their topological in-
formation and attributes information are inconsistent. We
plan to use multi-channel graph convolutional networks
and attention mechanism to extend our method so as to
automatically learn and combine the reliable information of
topology and attributes information and form effective and
robust representation mechanism in the future.

ACKNOWLEDGMENT

This work was supported in part by the Natural Sci-
ence Foundation of China (61876128, 61832014, 61772361),
the George Washington University Facilitating Fund (UFF)
FY21, and the NSF under grants III-1763325, III-1909323, and
SaTC-1930941.

REFERENCES

[1] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2014, pp. 701–710.

[2] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in Proceedings of the
24th International Conference on World Wide Web, 2015, pp. 1067–
1077.

[3] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph represen-
tations with global structural information,” in Proceedings of the
24th ACM International Conference on Information and Knowledge
Management, 2015, pp. 891–900.

[4] W. Yu, C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong,
H. Chen, and W. Wang, “Learning deep network representations
with adversarially regularized autoencoders,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 2663–2671.

[5] S. Gao, L. Denoyer, and P. Gallinari, “Temporal link prediction by
integrating content and structure information,” in Proceedings of
the 20th ACM International Conference on Information and Knowledge
Management, 2011, pp. 1169–1174.

[6] J. Tang, C. Aggarwal, and H. Liu, “Node classification in signed
social networks,” in Proceedings of the 2016 SIAM International
Conference on Data Mining, 2016, pp. 54–62.

[7] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[8] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick,
and J. Han, “Personalized entity recommendation: A heteroge-
neous information network approach,” in Proceedings of the 7th
ACM International Conference on Web Search and Data Mining, 2014,
pp. 283–292.

[9] F. Tian, B. Gao, Q. Cui, E. Chen, and T. Liu, “Learning deep
representations for graph clustering.” in Proceedings of the 28th
AAAI Conference on Artificial Intelligence, 2014, pp. 1293–1299.

[10] C. Tu, W. Zhang, Z. Liu, and M. Sun, “Max-Margin DeepWalk:
Discriminative learning of network representation,” in Proceedings
of the 25th International Joint Conference on Artificial Intelligence, 2016,
pp. 3889–3895.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proceedings of the 5th Interna-
tional Conference on Learning Representations, 2017.

[12] P. Zhang, B. Chai, J. Zhang, and W. Li, “Semi-supervised rep-
resentation learning method for attributed networks,” Computer
Engineering and Applications, 2019.

[13] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax.” in Proceedings of the 7th International
Conference on Learning Representations, 2019.

[14] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2016, pp.
855–864.

[15] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding.” in Proceedings of the 31st AAAI
Conference on Artificial Intelligence, 2017, pp. 203–209.

[16] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in Proceedings
of the 24th International Joint Conference on Artificial Intelligence, 2015,
pp. 2111–2117.

[17] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social
network embedding,” IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 12, pp. 2257–2270, 2018.

[18] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-Party deep
network representation,” in Proceedings of the 25th International
Joint Conference on Artificial Intelligence, 2016, pp. 1895–1901.

[19] X. Huang, J. Li, and X. Hu, “Accelerated attributed network em-
bedding,” in Proceedings of the 2017 SIAM International Conference
on Data Mining, 2017, pp. 633–641.

[20] I. Goodfellow, J. PougetAbadie, M. Mirza, B. Xu, D. WardeFarley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Advances in Neural Information Processing Systems, 2014,
pp. 2672–2680.

[21] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adver-
sarially regularized graph autoencoder for graph embedding,”
in Proceedings of the 27th International Joint Conference on Artificial
Intelligence, 2018, pp. 2609–2615.

[22] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in
Proceedings of the 5th International Conference on Learning Represen-
tations, 2016.

[23] S. Pan, R. Hu, S. Fung, G. Long, J. Jiang, and C. Zhang, “Learn-
ing graph embedding with adversarial training methods,” IEEE
Transactions on Cybernetics, vol. 50, no. 6, pp. 2475–2487, 2019.

[24] Q. Dai, Q. Li, J. Tang, and D. Wang, “Adversarial network embed-
ding,” in Proceedings of the 32nd Association for the Advancement of
Artificial Intelligence, 2018, pp. 2167–2174.

[25] D. Fu, Z. Xu, B. Li, H. Tong, and J. He, “A view-adversarial
framework for multi-view network embedding,” in Proceedings
of the 29th International Conference on Information and Knowledge
Management, 2020, pp. 2025–2028.

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3103193, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[26] H. Hong, X. Li, and M. Wang, “GANE: A generative adversarial
network embedding,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 31, no. 7, pp. 2325–2335, 2019.

[27] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “GraphGAN: Graph representation learning with
generative adversarial nets,” in Proceedings of the 32nd AAAI Con-
ference on Artificial Intelligence, 2018, pp. 2508–2515.

[28] S. Zhu, J. Li, H. Peng, S. Wang, P. S. Yu, and L. He, “Adversarial
directed graph embedding,” in Proceedings of the 35th AAAI Con-
ference on Artificial Intelligence, 2021.

[29] H. Gao, J. Pei, and H. Huang, “ProGAN: Network embedding via
proximity generative adversarial network,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2019, pp. 1308–1316.

[30] L. Yang, Y. Wang, J. Gu, C. Wang, X. Cao, and Y. Guo, “JANE:
Jointly adversarial network embedding,” in Proceedings of the 29th
International Joint Conference on Artificial Intelligence, 2020, pp. 1381–
1387.

[31] M. Khajehnejad, A. A. Rezaei, M. Babaei, J. Hoffmann, M. Jalili,
and A. Weller, “Adversarial graph embeddings for fair influence
maximization over social networks,” in Proceedings of the 29th
International Joint Conference on Artificial Intelligence, 2020, pp. 4306–
4312.

[32] S. Bandyopadhyay, L. N, S. V. Vivek, and M. N. Murty, “Outlier
resistant unsupervised deep architectures for attributed network
embedding,” in Proceedings of the 13th International Conference on
Web Search and Data Mining, 2020, pp. 25–33.

[33] Q. Liu, C. Long, J. Zhang, M. Xu, and P. Lv, “TriATNE: Tripartite
adversarial training for network embeddings,” IEEE Transactions
on Cybernetics, 2021.

[34] C. Wang, W. Shi, L. Huang, K. Lin, D. Huang, and P. S. Yu,
“Node pair information preserving network embedding based on
adversarial networks,” IEEE Transactions on Cybernetics, 2020.

[35] S. Kullback, Information theory and statistics. Courier Corporation,
1997.

[36] M. D. Donsker and S. S. Varadhan, “Asymptotic evaluation of
certain markov process expectations for large time, i,” Commu-
nications on Pure and Applied Mathematics, vol. 28, no. 1, pp. 1–47,
1975.

[37] S. Nowozin, B. Cseke, and R. Tomioka, “f-GAN: Training genera-
tive neural samplers using variational divergence minimization,”
in Advances in Neural Information Processing Systems, 2016, pp. 271–
279.

[38] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “Estimating
divergence functionals and the likelihood ratio by convex risk
minimization,” IEEE Transactions on Information Theory, vol. 56,
no. 11, pp. 5847–5861, 2010.

[39] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio,
A. Courville, and R. D. Hjelm, “MINE: Mutual information neural
estimation,” in Proceedings of the 35th International Conference on
Machine Learning, 2018.

[40] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature
learning,” in Proceedings of the 5th International Conference on Learn-
ing Representations, 2016.

[41] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[42] H. Liu, Z. Wu, X. Li, D. Cai, and T. S. Huang, “Constrained
nonnegative matrix factorization for image representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 7, pp. 1299–1311, 2012.

[43] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” Journal of Statistical Mechan-
ics: Theory and Experiment, vol. 2005, no. 09, p. P09008, 2005.

Dongxiao He received her Ph.D. degrees in
computer science from Jilin University, China,
in 2014. She is an Associate Professor in the
College of Intelligence and Computing, Tianjin
University, China. She has published 16 top-
tier journal and conference papers. Her current
research interests include data mining and net-
work analysis. She serves as senior program
committees for conferences AAAI and IJCAI.

Tao Wang is currently a master student of Col-
lege of Intelligence and Computing from Tianjin
University, Tianjin, China. His research interests
mainly related to community detection and social
network analysis.

Lu Zhai received the M.S. degree in College of
Intelligence and Computing, Tianjin University,
China. Her research interests are mainly related
to community detection, social network analysis
and machine learning.

Di Jin received his Ph.D. degrees in computer
science from Jilin University, China, in 2012.
He is currently an Associate Professor in the
College of Intelligence and Computing, Tianjin
University, China. He got WWW-21 Best Paper
Award Runner-up and published more than 20
papers in top-tier journals and conferences. His
research interests include social network analy-
sis and data mining. He serves as senior pro-
gram committees for conferences AAAI and IJ-
CAI.
Liang Yang received the Ph.D. degree in com-
puter science from the Institute of Information
Engineering, Chinese Academy of Sciences,
China, in 2016. He is an Assistant Professor
in the School of Artificial Intelligence, Hebei
University of Technology, China. His current re-
search interests include network analysis, low-
rank modeling, and data mining. He serves as
senior program committees for conference IJ-
CAI.

Yuxiao Huang is an Assistant Professor of
Data Science in the Columbian College of Arts
& Sciences at George Washington University
(U.S.A.). His research interest is Machine Learn-
ing. His work has been published on more than
20 international journals and conferences. He
serves as as program committee for conferences
including NeurIPS, ICML, AAAI and IJCAI. He
earned a PhD in Computer Science from Jilin
University (China).

Zhiyong Feng received his Ph.D. degree in
Tianjin University. He is currently a full professor
in the School of Computer Science and Technol-
ogy, Tianjin University, China. He is the author
of one book, more than 130 articles, and 39
patents. His research interests include knowl-
edge engineering, services computing, and se-
curity software engineering. He is a member of
the IEEE and ACM.

Philip S. Yu is a Distinguished Professor in
Computer Science at the University of Illinois at
Chicago. His research interest is on big data, in-
cluding data mining, data stream, database and
privacy. He has published more than 920 papers
in refereed journals and conferences. He holds
or has applied for more than 300 US patents.
Dr. Yu is a Fellow of the ACM and of the IEEE.
He is on the steering committee of IEEE Confer-
ence on Data Mining and was a member of the
IEEE Data Engineering steering committee. Dr.

Yu received the B.S. Degree in E.E. from National Taiwan University, the
M.S. and Ph.D. degrees in E.E. from Stanford University, and the M.B.A.
degree from New York University.

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on December 13,2021 at 05:23:47 UTC from IEEE Xplore. Restrictions apply.

